jsxmn.cn-亚洲中文字幕久久精品无码A,亚洲av无码一区二区三区dv,国产在线精品一区二区,激情伊人五月天久久综合

產品展示 / products 您的位置:網站首頁 > 產品展示 > 細胞庫 > 細胞系 > 人肝癌細胞HepG2
產品分類

Product category

相關文章

Related articles

人肝癌細胞HepG2

人肝癌細胞HepG2

簡要描述:青旗(上海)生物技術發展有限公司,總部位于上海浦東新區,依托本地高校資源,逐步發展成為以生物技術為主的研發、生產、培訓為一體的綜合化產業平臺,在標準化細胞庫建立及細胞藥物前端模型方面成果顯著。公司生產經營原代細胞、細胞系、ELISA試劑盒、感受態細胞和HPLC檢測等科研產品與服務。我們秉承對用戶負責的態度,以對科研的高度嚴謹,以嚴格的質量控制,為廣大生物醫學科研用戶提供更優質的服務!

更新時間:2021-05-24

廠商性質:生產廠家

瀏覽次數:582

詳情介紹
品牌其他品牌貨號BFN60800692
規格T25培養瓶x1 1.5ml凍存管x2供貨周期現貨
主要用途僅供科研應用領域醫療衛生,生物產業

細胞名稱

人肝癌細HepG2                  

img1

貨物編碼

BFN60800692

產品規格

T25培養x1

1.5ml凍存x2

細胞數量

1x10^6

1x10^6

保存溫度

37

-198

運輸方式

常溫保溫運輸

干冰運輸

安全等級

1

用途限制

僅供科研用途               1類

 

培養體系

DMEM高糖培養基Hyclone+10%胎牛血清Gibco+1%雙抗Hyclone

培養溫度

37

二氧化碳濃度

5%

簡介

人肝癌細HepG2細胞來源于一15歲的白人少年的肝癌組織。該細胞表達甲胎蛋白、白蛋白α-2-巨球蛋白α-1-抗胰蛋白酶、轉鐵蛋白α-1-抗凝乳蛋白酶、結合珠蛋白、銅藍蛋白、纖溶酶原、補C4C3激活物、纖維蛋白原α-1酸性糖蛋白α-2-HS-糖蛋白β-脂蛋白、視黃醇結合蛋白;表達胰島素受體和胰島素樣生長因IGF的受體;該細胞具3--3-甲酰輔A還原酶和肝甘油三酯脂肪酶的活性。目前尚未證明該細胞中HBV基因組 人肝癌細HepG2細胞由青旗(上海)生物技術發展有限公司2019年引種ATCCHB-8065)

注釋

Problematic cell line: Misidentified. Originally thought to be a hepatocellular carcinoma cell line but shown to be from an hepatoblastoma (PubMed=19751877).

Part of: Cancer Cell Line Encyclopedia (CCLE) project.

Part of: ENCODE project common cell types; tier 1.

Part of: JFCR45 cancer cell line panel.

Part of: MD Anderson Cell Lines Project.

Part of: TCGA-110-CL cell line panel.

Doubling time: ~50-60 hours (DSMZ).

Omics: Deep antibody staining analysis.

Omics: Deep exome analysis.

Omics: Deep phosphoproteome analysis.

Omics: Deep proteome analysis.

Omics: Deep RNAseq analysis.

Omics: DNA methylation analysis.

Omics: Genome sequenced.

Omics: H3K27ac ChIP-seq epigenome analysis.

Omics: H3K27me3 ChIP-seq epigenome analysis.

Omics: H3K36me3 ChIP-seq epigenome analysis.

Omics: H3K4me1 ChIP-seq epigenome analysis.

Omics: H3K4me2 ChIP-seq epigenome analysis.

Omics: H3K4me3 ChIP-seq epigenome analysis.

Omics: H3K79me2 ChIP-seq epigenome analysis.

Omics: H3K9ac ChIP-seq epigenome analysis.

Omics: H3K9me3 ChIP-seq epigenome analysis.

Omics: H4K20me1 ChIP-seq epigenome analysis.

Omics: Metabolome analysis.

Omics: Protein expression by reverse-phase protein arrays.

Omics: Secretome proteome analysis.

Omics: SNP array analysis.

Omics: Transcriptome analysis.

Omics: Virome analysis using proteomics.

STR信息

AmelogeninXYCSF1PO1011D13S317913D16S5391213D18S511314D19S43315.2D21S112931D2S13381920D3S13581516D5S8181112D7S82010D8S11791516FGA2225TH019TPOX89vWA17

參考文獻

PubMed=233137; DOI=10.1038/282615a0

Aden D.P., Fogel A., Plotkin S.A., Damjanov I., Knowles B.B.

Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line.

Nature 282:615-616(1979)

 

PubMed=6248960; DOI=10.1126/science.6248960

Knowles B.B., Howe C.C., Aden D.P.

Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen.

Science 209:497-499(1980)

 

Patent=US4393133

Knowles B.B., Aden D.P.

Human hepatoma derived cell line, process for preparation thereof, and uses therefor.

Patent number US4393133, 12-Jul-1983

 

PubMed=2439335; DOI=10.1111/j.1432-1033.1987.tb11497.x

Vincent C., Marceau M., Blangarin P., Bouic P., Madjar J.J., Revillard J.-P.

Purification of alpha 1-microglobulin produced by human hepatoma cell lines. Biochemical characterization and comparison with alpha 1-microglobulin synthesized by human hepatocytes.

Eur. J. Biochem. 165:699-704(1987)

 

PubMed=8384076; DOI=10.1016/0165-4608(93)90227-D

Chen H.-L., Chiu T.-S., Chen P.-J., Chen D.-S.

Cytogenetic studies on human liver cancer cell lines.

Cancer Genet. Cytogenet. 65:161-166(1993)

 

PubMed=8389256; DOI=10.1093/carcin/14.5.987

Hsu I.C., Tokiwa T., Bennett W., Metcalf R.A., Welsh J.A., Sun T., Harris C.C.

p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines.

Carcinogenesis 14:987-992(1993)

 

PubMed=8050184; DOI=10.1111/j.1365-2249.1994.tb06089.x

Wadee A.A., Paterson A., Coplan K.A., Reddy S.G.

HLA expression in hepatocellular carcinoma cell lines.

Clin. Exp. Immunol. 97:328-333(1994)

 

DOI=10.11418/jtca1981.16.3_173

Mihara K., Miyazaki M., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-I., Ohashi R., Namba M.

The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory.

Tissue Cult. Res. Commun. 16:173-178(1997)

 

PubMed=9178645; DOI=10.1006/cimm.1997.1108

Nakao M., Sata M., Saitsu H., Yutani S., Kawamoto M., Kojiro M., Itoh K.

CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.

Cell. Immunol. 177:176-181(1997)

 

PubMed=9359923; DOI=10.18926/AMO/30789

Mihara K., Miyazaki M., Kondo T., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-I., Ishioka C., Namba M.

Yeast functional assay of the p53 gene status in human cell lines maintained in our laboratory.

Acta Med. Okayama 51:261-265(1997)

 

PubMed=11050057; DOI=10.1053ep.2000.19349

Wong N., Lai P., Pang E., Leung T.W.-T., Lau J.W.-L., Johnson P.J.

A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping.

Hepatology 32:1060-1068(2000)

 

PubMed=12029633; DOI=10.1053ep.2002.33683

Yasui K., Arii S., Zhao C., Imoto I., Ueda M., Nagai H., Emi M., Inazawa J.

TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas.

Hepatology 35:1476-1484(2002)

 

PubMed=12068308; DOI=10.1038/nature00766

Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J.W., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C., Shipley J.M., Hargrave D., Pritchard-Jones K., Maitland N.J., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A.M., Nicholson A., Ho J.W.C., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Mutations of the BRAF gene in human cancer.

Nature 417:949-954(2002)

 

DOI=10.1385/CP:1:3-4:313

Pang R.T.K., Poon T.C.W., Wong N., Lai P.B.-S., Wong N.L.Y., Chan C.M.L., Yu J.W.S., Chan A.T.C., Sung J.J.Y.

Comparison of protein expression patterns between hepatocellular carcinoma cell lines and a hepatoblastoma cell line.

Clin. Proteomics 1:313-331(2004)

 

PubMed=14980111

Zhai B.-J., Wu F., Shao Z.-Y., Hu K., Zhao C.L., Wang Z.-B.

Establishment of human hepatocellular carcinoma multidrug-resistance cell line (HepG2/Adm) and study apoptosis induced by low-frequency pulse ultrasound exposure.

Zhonghua Gan Zang Bing Za Zhi 12:95-98(2004)

 

PubMed=15767549; DOI=10.1158/1535-7163.MCT-04-0234

Nakatsu N., Yoshida Y., Yamazaki K., Nakamura T., Dan S., Fukui Y., Yamori T.

Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.

Mol. Cancer Ther. 4:399-412(2005)

 

PubMed=17254797; DOI=10.1016/j.biologicals.2006.10.001

Azari S., Ahmadi N., Tehrani M.J., Shokri F.

Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.

Biologicals 35:195-202(2007)

 

PubMed=19751877; DOI=10.1016/j.humpath.2009.07.003

Lopez-Terrada D.H., Cheung S.W., Finegold M.J., Knowles B.B.

Hep G2 is a hepatoblastoma-derived cell line.

Hum. Pathol. 40:1512-1515(2009)

 

PubMed=20069059; DOI=10.1155/2010/437143

Srisomsap C., Sawangareetrakul P., Subhasitanont P., Chokchaichamnankit D., Chiablaem K., Bhudhisawasdi V., Wongkham S., Svasti J.

Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes.

J. Biomed. Biotechnol. 2010:437143-437143(2010)

 

PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458

Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Cancer Res. 70:2158-2164(2010)

 

PubMed=20228232; DOI=10.1124/dmd.109.031831

Hart S.N., Li Y., Nakamoto K., Subileau E.-A., Steen D., Zhong X.-B.

A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues.

Drug Metab. Dispos. 38:988-994(2010)

 

PubMed=21269460; DOI=10.1186/1752-0509-5-17

Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.

Initial characterization of the human central proteome.

BMC Syst. Biol. 5:17-17(2011)

 

PubMed=22278370; DOI=10.1074/mcp.M111.014050

Geiger T., Wehner A., Schaab C., Cox J., Mann M.

Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.

Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012)

 

PubMed=22460905; DOI=10.1038/nature11003

Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.K., Yu J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Nature 483:603-607(2012)

 

PubMed=23325432; DOI=10.1101/gr.147942.112

Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., Pauli-Behn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M.

Dynamic DNA methylation across diverse human cell lines and tissues.

Genome Res. 23:555-567(2013)

 

PubMed=23505090; DOI=10.1002/hep.26402

Wang K., Lim H.Y., Shi S., Lee J., Deng S., Xie T., Zhu Z., Wang Y., Pocalyko D., Yang W.J., Rejto P.A., Mao M., Park C.-K., Xu J.

Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.

Hepatology 58:706-717(2013)

 

PubMed=23887712; DOI=10.1038/ncomms3218

Nault J.-C., Mallet M., Pilati C., Calderaro J., Bioulac-Sage P., Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J.

High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.

Nat. Commun. 4:2218-2218(2013)

 

PubMed=24116068; DOI=10.1371/journal.pone.0075692

Weiskirchen R., Weimer J., Meurer S.K., Kron A., Seipel B., Vater I., Arnold N., Siebert R., Xu L.-M., Friedman S.L., Bergmann C.

Genetic characteristics of the human hepatic stellate cell line LX-2.

PLoS ONE 8:E75692-E75692(2013)

 

PubMed=24618588; DOI=10.1371/journal.pone.0091433

Chernobrovkin A.L., Zubarev R.A.

Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.

PLoS ONE 9:E91433-E91433(2014)

 

PubMed=25960936; DOI=10.4161/21624011.2014.954893

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

OncoImmunology 3:E954893-E954893(2014)

 

PubMed=25485619; DOI=10.1038/nbt.3080

Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z., Liu H., Degenhardt J., Mayba O., Gnad F., Liu J., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.

A comprehensive transcriptional portrait of human cancer cell lines.

Nat. Biotechnol. 33:306-312(2015)

 

PubMed=25574106; DOI=10.3748/wjg.v21.i1.311

Cevik D., Yildiz G., Ozturk M.

Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations.

World J. Gastroenterol. 21:311-317(2015)

 

PubMed=26160117; DOI=10.1093/toxsciv136

Sison-Young R.L.C., Mitsa D., Jenkins R.E., Mottram D., Alexandre E., Richert L., Aerts H., Weaver R.J., Jones R.P., Johann E., Hewitt P.G., Ingelman-Sundberg M., Goldring C.E.P., Kitteringham N.R., Park B.K.

Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication.

Toxicol. Sci. 147:412-424(2015)

 

PubMed=26825538; DOI=10.1016/j.jprot.2016.01.016

Wisniewski J.R., Vildhede A., Noren A., Artursson P.

In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes.

J. Proteomics 136:234-247(2016)

 

PubMed=27329724; DOI=10.18632/oncotarget.10161

Watari K., Nishitani A., Shibata T., Noda M., Kawahara A., Akiba J., Murakami Y., Yano H., Kuwano M., Ono M.

Phosphorylation of mTOR Ser2481 is a key target limiting the efficacy of rapalogs for treating hepatocellular carcinoma.

Oncotarget 7:47403-47417(2016)

 

PubMed=27470094; DOI=10.1016/j.chroma.2016.07.042

Liu Z.-Y., Wang F.-J., Chen J., Zhou Y., Zou H.-F.

Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy.

J. Chromatogr. A 1461:35-41(2016)

 

PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005

Li J., Zhao W., Akbani R., Liu W., Ju Z., Ling S., Vellano C.P., Roebuck P., Yu Q., Eterovic A.K., Byers L.A., Davies M.A., Deng W., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y., Mills G.B., Liang H.

Characterization of human cancer cell lines by reverse-phase protein arrays.

Cancer Cell 31:225-239(2017)

 

DOI=10.1101/378497

Zhou B., Ho S.S., Greer S.U., Spies N., Bell J.M., Zhang X., Zhu X., Arthur J.G., Byeon S., Pattni R., Saha I., Song G., Ji H.P., Perrin D., Wong W.H., Abyzov A., Urban A.E.

Haplotype-resolved and integrated genome analysis of ENCODE cell line HepG2.

bioRxiv 2018:378497-378497(2018)

 

PubMed=29610054; DOI=10.1016/j.dmpk.2018.03.003

Shi J., Wang X., Lyu L., Jiang H., Zhu H.-J.

Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.

Drug Metab. Pharmacokinet. 33:133-140(2018)

 

PubMed=29660373; DOI=10.1016/j.bbagen.2018.04.012

Touat-Hamici Z., Bulteau A.-L., Bianga J., Jean-Jacques H., Szpunar J., Lobinski R., Chavatte L.

Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

Biochim. Biophys. Acta 1862:2493-2505(2018)

 

PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747

Dutil J., Chen Z., Monteiro A.N., Teer J.K., Eschrich S.A.

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Cancer Res. 79:1263-1273(2019)

 

PubMed=31068700; DOI=10.1038/s41586-019-1186-3

Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. III, Barretina J., Gelfand E.T., Bielski C.M., Li H., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Nature 569:503-508(2019)

 

PubMed=31395879; DOI=10.1038/s41467-019-11415-2

Yu K., Chen B., Aran D., Charalel J., Yau C., Wolf D.M., van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

Nat. Commun. 10:3574-3574(2019)

 

 

驗收細胞注意事 

1、收到人肝癌細HepG2細胞,請查看瓶子是否有破裂,培養基是否漏出,是否渾濁,如有請盡快聯系 

2、收到人肝癌細HepG2細胞,如包裝完好,請在顯微鏡下觀察細胞,由于運輸過程中的問題,細胞培養瓶中的貼壁細胞有可能從瓶壁中脫落下來,顯微鏡下觀察會出現細胞懸浮的情況,出現此狀態時,請不要打開細胞培養瓶,應立即將培養瓶置于細胞培養箱里靜 3-5 小時左右,讓細胞先穩定下,再于顯微鏡下觀察,此時多數細胞會重新貼附于瓶壁。如細胞仍不能貼壁,請用臺盼藍染色法鑒定細胞活力,如臺盼藍染色證實細胞活力正常請按懸浮細胞的方法處理 

3、收到人肝癌細HepG2細胞后,請鏡下觀察細胞,用恰當方式處理細胞。若懸浮的細胞較多,請離心收集細胞,接種到一個新的培養瓶中。棄掉原液,使用新鮮配制的培養基,使用進口胎牛血清。剛接到細胞,若細胞不多 血清濃度可以加 15%去培養。若細胞迏 80% ,血清濃度還是 10 

4、收到人肝癌細HepG2細胞時如無異常情 ,請在顯微鏡下觀察細胞密度,如為貼壁細胞,未超80%匯合度時,將培養瓶中培養基吸出,留 5-10ML 培養基繼續培養:超 80%匯合度時,請按細胞培養條件傳代培養。如為懸浮細胞,吸出培養液1000 /分鐘離 3 分鐘,吸出上清,管底細胞用新鮮培養基懸浮細胞后移回培養瓶 

5、將培養瓶置 37培養箱中培養,蓋子微微擰松。吸出的培養基可以保存在滅菌過的瓶子里,存放 4冰箱,以備不時之需 

624 小時后,人肝癌細HepG2細胞形態已恢復并貼滿瓶壁,即可傳代。(貼壁細胞)將培養瓶里的培養基倒去, 3-5ml(以能覆蓋細胞生長面為準PBS  Hanks液洗滌后棄去。 0.5-1ml 0.25% EDTA 的胰酶消化,消化時間以具體細胞為準,一 1-3 分鐘,不超 5 分鐘。可以放37培養箱消化。輕輕晃動瓶壁,見細胞脫落下來,加 3-5ml 培養基終止消化。用移液管輕輕吹打瓶壁上的細胞,使之*脫落,然后將溶液吸入離心管內離心1000rpm/5min。棄上清,視細胞數量決定分瓶數,一般一傳二,如細胞量多可一傳三,有些細胞不易傳得過稀,有些生長較快的細胞則可以多傳幾瓶,以具體細胞和經驗為準。(懸浮細胞)用移液管輕輕吹打瓶壁,直接將溶液吸入離心管離心即可 

7、貼壁細 ,懸浮細胞。嚴格無菌操作。換液時,換新的細胞培養瓶和換新鮮的培養液375%CO2 培養。

 

特別提醒 原瓶中培養基不宜繼續使用,請更換新鮮培養基培養。



留言框

  • 產品:

  • 您的單位:

  • 您的姓名:

  • 聯系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結果(填寫阿拉伯數字),如:三加四=7